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Abstract
In an effort to achieve a comprehensive understanding of the structure of
dense H2, we have performed path-integral Monte Carlo simulations for three
combinations of pressures and temperatures corresponding to three phases of
solid hydrogen. Our results suggest three kinds of distribution of molecules:
orientationally disordered hexagonal close packed (hcp), orientationally
ordered hcp with Pa3-type local orientation order and orientationally ordered
orthorhombic structure of Cmca symmetry, for the three phases.

1. Introduction

The phase diagram of solid hydrogen in the pressure (P) and temperature (T ) plane has been
studied for many years. For P up to about 200 GPa, it is well established that the solid hydrogen
shows at least three relevant molecular phases (phases I–III), on the basis of static compression
experiments [1–6].

(1) Phase I, at P < 110 GPa: an orientationally disordered hexagonal close-packed (hcp)
phase.

(2) Phase II or the broken-symmetry phase, at P between 110 and 150 GPa: an orientationally
ordered phase.

(3) Phase III or the H –A phase: expected to be another kind of orientationally ordered phase.

Even though the structures of these phases have been extensively investigated both in
experimental and theoretical studies, some detailed structural information is still in dispute.
In an effort to achieve an understanding of the dense H2 phases theoretically, several
methods have been used for different levels of approximation to the ab initio Hamiltonian
representing the coupled system of Na protons and Na electrons, including the local density
approximation (LDA)—and its refinements—to the density-functional theory [7–16], ab initio
molecular dynamics treating protons as classical particles [17–19],first-principles path-integral
molecular dynamics [20] and quantum Monte Carlo (QMC) simulation [21–23]. In this
paper, we treat the hydrogen molecules as a basic ingredient in simulations, rather than
the proton–electron mixture; the system is reduced to a quantum-mechanical problem of
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N (=2Na) molecules interacting with each other through an effective intermolecular potential.
The QMC calculation is implemented only for the nuclear degrees of freedom [24–30], while
the electronic degrees of freedom are implicitly taken into account in the choice of the potential.
We employ the finite-temperature path-integral Monte Carlo method to investigate both lattice
and orientational structures in the molecular phase with zero-point motions incorporated
rigorously.

2. Theoretical model

Within the approximation that a molecule can be regarded as a basic ingredient, a quantum
solid with translational and rotational degrees of freedom can be described by the Hamiltonian

H = T + V ,

T = − h̄2

2m

N∑
i

∇2
Ri

+
h̄2

2I

N∑
i

L2
i ,

V = 1
2

N∑
i �= j

V (Ri j ,Ωi ,Ω j ),

(1)

where Ri is the centre-of-mass position vector of the i th molecule, Ωi its orientation vector,
Li its angular momentum operator and Ri j = Ri −R j is the intermolecular separation vector.
M and I denote the molecular mass and moment of inertia, respectively.

The intermolecular interaction potential employed here consists of an isotropic part (the
Silvera and Goldman potential VSG with an additional ad hoc correction VS R proposed by
Hemley et al [31]) and an anisotropic part (the Schaefer potential VSchaef er with a scaling
factor χ proposed by Runge et al [25]), as follows:

V = VSG + VS R + Vani ,

VSG(R) = eα−β R−λR2 − f (R)

{
C6

R6
+

C8

R8
+

C10

R10
− C9

R9

}
,

f (R) =
{

e−(1.28Rm/R−1)2
, if R � 1.28Rm,

1, otherwise,

VS R(R) =
{

a1(R − RC)2 + a2(R − RC)6, if R � RC ,

0, otherwise,

Vani = χVSchaef er ,

χ = 0.61 + 0.31(RN N/R0
N N − 0.5)

(2)

where RN N is the nearest-neighbour spacing, and R0
N N = 3.789 Å. Additional details about

the potential can be found in [29, 30]. The potential has been proved reliable for solid H2 and
D2 up to 150 GPa [6]. The potential does not contain any dependence on the intramolecular
bond length, so each molecule in the solid is considered as a movable, orientable rigid rotor.

The extended solid is modelled by a simulation cell of finite size, which is periodically
duplicated in all three spatial dimensions to minimize surface and finite-size errors. The N
molecules are initially placed according to a given crystal structure in the cell. The interactions
are evaluated making use of the periodicity and the ‘minimum imaging’ method. A cut-off
correction to the potential energy is included by assuming that beyond the cut-off length the
solid is a continuous and uniform medium, with the same density as inside the cell. This allows
integration over the exterior density. The cut-off length is chosen to be equal to half of the
smallest cell dimension.
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The initial size and geometry of the simulation cell are chosen to accommodate a particular
density (N = 64) and hcp structure. A simulation cell is determined by two basis vectors
(ap and bp) forming a 60◦ angle and the third one (cp) perpendicular to both ap and bp with
the appropriate length ratio:

ap:bp:cp = 1:1:
√

6/3.

The packing pattern is ABAB · · ·, forming the hcp lattice structure. There are four layers in
the cp-direction and 4 × 4 molecules in each layer.

In order to avoid the bias of a restrictive cell geometry with a predetermined crystal
structure, the path-integral Monte Carlo (PIMC) method with a constant-pressure (N PT )
ensemble is used, instead of the simpler constant-volume (NV T ) ensemble where the
simulation cell remains fixed. The implementation of the N PT ensemble is achieved by
an extra Metropolis move of the cell size and geometry, which generates a Markov chain of
states having a limiting distribution proportional to

exp[−β PV − β E(s) + N ln V ]. (3)

Here P is the given pressure, V the cell volume, E(s) is the energy 〈H 〉 of the configuration s, s
represents a set of scaled coordinates. This enables us to monitor volume changes and therefore
to observe any possible first-order phase transition directly. The technique is documented
in [29], so we omit the details here.

3. Results

The study is confined to a solid system of para-H2, to avoid the ‘minus-sign problem’
encountered in QMC studies associated with fermions. About 5000 Monte Carlo steps are used
for equilibration. Statistical averages are collected from every second step after equilibrium
is reached, to a total of about 10 000 data points. The partition number M = 80 is used. The
lattice structure of the solid is monitored by the pair distribution function g(R):

g(R) = 1

4π R2ρ

〈∑
i< j

δ(Ri j − R)

〉
(4)

where ρ is the density of system. This function has well-defined peaks indicating the neighbour
shells.

The correlations in the molecular orientations are monitored by a two-body correlation
function O(R) defined in [29]:

O(R) =
〈∑

i< j P2(cos θ)δ(Ri j − R)∑
i< j δ(Ri j − R)

〉

where θ is the polar angle between the orientation vectors of the molecules located at R j and
Ri . This function measures the two-body orientation correlation at the intermolecular distance
R, normalized by the number of molecules at that distance.

Figure 1 shows our PIMC results for both O(R) and g(R) at 100 K and 30 GPa, in phase I.
The fact that O(R) averages to approximately zero shows that the molecular orientation is
disordered in the solid. The lattice stays in the hcp structure, described by an g(R) curve. This
result is consistent with the structure suggested by single-crystal x-ray diffraction data [1].

The simulation results for both O(R) and g(R) at 100 K and 120 GPa, corresponding to
phase II, are shown in figure 2. At this temperature and pressure point, a well-defined structure
in O(R) can be found, revealing that the molecular orientation is ordered. The ordering
signature, i.e. the detailed structure of O(R) curve, is similar to that for Pa3 [29]. But g(R)
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Figure 1. The orientational correlation function O(R) and the pair distribution function g(R) at
100 K and 30 GPa.

Figure 2. The orientational correlation function O(R) and the pair distribution function g(R) at
100 K and 120 GPa.

retains the characteristics of hcp structure. Snapshots of the average equilibrium distribution
of molecules in real space (not shown here) confirm the lattice information. Therefore, it is
concluded that phase II is an orientationally ordered hcp phase with Pa3-type local orientation
order.

Figure 3 gives O(R) and g(R) at 100 K and 180 GPa corresponding to phase III. The
detailed structure of O(R) also shows that the phase is orientationally ordered. But the g(R)

gives different information from the hcp one, suggesting that phase III has different lattice
structure to phase II. So,phase III is another kind of orientationally ordered phase with different
lattice structure.
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Figure 3. The orientational correlation function O(R) and the pair distribution function g(R) at
100 K and 180 GPa.

Figure 4. Snapshots of the equilibrium distributions of molecules at 100 K and 180 GPa in real
space projected on (a) the X Z -plane and (b) the Y Z -plane. Fluctuations are also shown here. In (b)
filled and open symbols show the molecules for layer A and layer B, respectively.

To help one to understand the structure of phase III more clearly, the equilibrium
distributions of 64 (=4 × 4 × 4) molecules in real space projected on X Z - and Y Z -planes are
shown in figure 4. Figure 4(a) tells us that the structure is still layered, and figure 4(b) shows
that each molecule occupies the lattice site of an orthorhombic Cmca structure. So our result
suggests that phase III is an orientationally ordered phase based on Cmca symmetry, which is
similar to that suggested by Kitamura et al [20].
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In summary, from a model treating a hydrogen molecule as a movable, orientable rigid
rotor, three kinds of structure corresponding to the three phases of solid hydrogen have been
found systematically. Further work is needed to explore in more depth the reasons for the
stabilities and properties of the three phases.
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